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ABSTRACT

This thesis addresses the optimization problem of intelligent transportation sys-
tems by proposing a deep learning-based traffic flow prediction and optimization
method. Through the construction of a multi-layer neural network model, accurate
prediction of traffic flow in urban road networks is achieved, and reinforcement learn-
ing algorithms are combined to optimize traffic signal control strategies.

The research first collected traffic flow data from typical road sections in the main
urban area of Chongqing and established a traffic dataset containing spatiotemporal
features. On this basis, a hybrid deep learning model integrating Convolutional Neural
Networks (CNN) and Long Short-Term Memory networks (LSTM) was designed to
capture the spatiotemporal evolution patterns of traffic flow. Experimental results show
that the model reduces the Mean Absolute Error (MAE) by 23.5% and the Root Mean
Square Error (RMSE) by 18.7% in short-term traffic flow prediction tasks.

Furthermore, this thesis models the traffic signal control problem as a Markov
Decision Process (MDP) and employs the Deep Q-Network (DQN) algorithm to learn
optimal control strategies. Simulation experiments demonstrate that compared to tradi-
tional fixed-time schemes, DQN-based adaptive signal control reduces average vehicle
delay by 31.2% and increases network capacity by 24.6%.

This research provides a new technical approach for the optimization of intelligent
transportation systems, with significant theoretical and practical value.

KEY WORDS: Intelligent Transportation System; Deep Learning; Traffic Flow Pre-
diction; Signal Optimization; Reinforcement Learning
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